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Abstract

Trailing vortices generated by lifting surfaces such as helicopter rotor blades,

ship propellers, fixed wings, and canard control surfaces are known to be the

source of noise, vibration, cavitation, degradation of performance, and other

hazardous problems. Controlling these vortices is therefore of practical interest.

The formation and behavior of the Irailing vortices are studied in the present

research.. In addition, wing-tip blowing concepts employing axial blowing and

spanwise blowing are studied to determine their effectiveness in controlling these

vortices and their effects on the performance of the wing. The three-

dimensional, unsteady, thin-layer compressible Navier-Stokes equations are

solved using a time-accurate, implicit, finite difference scheme that employs LU-

ADI factorization. The wing-tip blowing is simulated using the actuator plane

concept, thereby not requiring resolution of the jet slot geometry. Furthermore,

the solution blanking feature of the chimera scheme is used to simplify the

parametric study procedure for the wing-tip blowing. Computed results are

shown to compare favorably with experimental measurements. It is found that

axial wing-tip blowing, although delaying the rolling-up of the trailing vortices

and the near-field behavior of the flowfield, does not dissipate the circulation

strength of the trailing vortex farther downstream. Spanwise wing-tip blowing





has the effect of displacing the trailing vortices outboard and upward. The

increased "wing-span" due to the spanwisewing-tip blowing has the effect of lift

augmentation on the wing and the strengthening of the trailing vortices.

Secondary trailing vortices are created at high spanwise wing-tip blowing

intensities.
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Chapter 1

Introduction

1.1 Motivation

Near the tip of a lifting surface, the pressure differential between the upper and

lower surfaces causes the fluid to move around the tip from the higher pressure

lower surface towards the lower pressure upper surface. As the fluid undergoes

this highly 3-dimensional maneuver at the tip, it realigns the bound vortex

(caused by the boundary layer vorticity of the lifting surface) which is parallel to

the span of the lifting surface into the downslream direction. This tip vortex is

convected downstream and is typically called the trailing vortex.

Trailing vortices of a conventional fixed-wing aircraft axe depicted in

Figure 1.1. The vortices generated by larger fixed-wing aircraft may cause

undesirable and sometimes uncontrollable rolling moment and other hazardous

effects on smaller aircraft flying into their wakes. (See Figure 1.2.) These

trailing vortices may persist for a considerable distance; and result in a rather

long safety distance (thus long interval) required between flights. The problem

can be severe especially during take-off and landing at a busy airport. Trailing
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vortices from the canards of many modem fighter aircraft can also pose

problems on the wings of the aircraft resulting in the degradation of

performance.

For helicopter rotor blades, trailing vortices are convected downward in a

helical manner (see Figure 1.3) due to the downwash and the rotational motion

of the lifting surfaces. Vortices shed from the preceding blades of a helicopter

may interact with the following blades (called blade-vortex interaction; see

Figure 1.4) during forward and descending flights. This is a major source of

noise and vibration for helicopters (see, for example, Schmitz and Yu [1983]).

Ship propellers have a very similar problem encountered by helicopter rotor

blades. In addition, erosion on propeller blades may occur as the propeller

blades strike the low pressure air pockets (called cavitation) created by the

trailing vortices (see Figure 1.5).

It is therefore of practical interest to explore the effects of control devices

such as axial and spanwise wing-tip blowing on the formation and behavior of tip

vortices and on the performance of the wing. Spanwise blowing has been studied

also as a means of control to effect a change of vortex position on one wing-tip

and thereby produce a rolling moment through asymmewic wing lift (see Tavella

et al [1988]).

For several reasons, then, it is desirable to better understand

computationally the origin of the tip vortex and the wing it is influenced by

blowing - i.e. whether it can be displaced to produce a rolling moment and

whether its behavior downstream can be affected to reduce noise and reduce the

hazard to following aircraft.
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1.2 Previous Work

1.2.1 Experimental and Theoretical Work

The phenomenon of the trailing vortex from a lifting surface was recognized as

early as 1907 by Lanchester [1907] (see Figure 1.6). Some subsequent landmark

works include Westwater's calculation of the vortex roll-up and trajectory using

the two-dimensional (Trefftz plane) model of a vortex sheet consisting of point,

doubly infinite, vortex elements (see Westwater [1935]). Betz [1932] analyzed

the movement of the center of gravity of the trailing vortices in the two-

dimensional cross-plane. Spreiter and Sacks [1951] studied the inviscid effects of

lifting surface parameters such as aspect ratio, lift coefficient and wing chord on

the downwash by solving the Laplace equation.

By correlating with experimental data, McCormick et al [1968], Roberts

[1975, 1984], Phillips [1981] proposed analytical scaling laws to describe the

structure of viscous turbulent trailing vortices with some success. Various

experimental studies involving scaled model testing using wind-tunnels and full-

scale flight testing were also carried out especially in the 1970s (see, for

example, Olsen et al [1971], and Hallock and Eberle [1977]). A more recent and

comprehensive experimental study was performed by McAlister and Takahashi

[1991].

Concurrently, efforts were being made to minimize the effects of trailing

vortices. Most of the efforts employed various wing-tip configurations to

spread, relocate, and dissipate the trailing vortices (see Figure 1.7). For

example, the configuration with gulled outer panels in Figure 1.7 serves to
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divide the total concentrated vorticity into two vortices, each of lesser strength,

at two different spanwise locations, (one at the juncture of the gulled tip and

main lifting surface and the other at the tip), and also to relocate the tip vortex

with respect to a dimension normal to the wing chord plane because of the

deflection of the tip of the gulled section (see White [1973]). The configuration

with a drag spoiler fixed at the wing-tip is known to increase the aircraft drag

(see Corsiglia et al [1971]). These fixed configurations, although they may be

optimized for a particular flight condition, suffer degradation in performance

for other flight conditions. On the other hand, configurations employing active

control devices such as wing-tip blowing allow adjustments to be made as the

flight condition changes by changing the blowing intensity. The emphasis of the

present research effort is on these active control configurations employing wing-

tip blowing.

Some experimental investigations had been carried out to study the effects

of axial wing-tip blowing (or mass injection) on the behavior of trailing vortices

at low Reynolds number (see, for example, Snedeker [1971], Mason and

Marchman [1973], White [1973], and Dunham [1976]). However, it was not

conclusive whether this concept of employing axial wing-tip blowing was

effective since conflicting observations were reported.

The concept of employing spanwise wing-tip blowing had also been

carried out experimentally (see, for example, Ayers and Wilde [1956], Wu et al

[1984], Tavella et al [1985], and Lee et al [1989]). It was observed that lift

augmentation could be achieved via spanwise wing-tip blowing.



CHAPTER 1. INTRODUCTION 5

Olsen et al [1971], Hallock and Eberle [1977], and Hallock [1992] provide

more details on various research efforts on the trailing vortex problem.

1.2.2 Computational Work

A preliminary study on the tip vortex from a low aspect ratio wing was studied

by Mansour [1985] using the Computational Fluid Dynamics (CFD)

methodology. Srinivasan et al [1988] extended the study to include the effects of

wing planform shape and the wing-tip shape on the structure of the trailing

vortices. Strawn [1991] applied the unstructured adaptive-grid scheme to study

the structure of inviscid trailing vortices by solving the Euler equations. Dacles-

Mariani et al [1993] incorporated the experimental data of Chow et al [1993] into

the computations to study the near-field structure of the turbulent wing-tip

vortex. Childs [1986] did a preliminary study on the lift augmentation due to the

spanwise wing-tip blowing. Wong and Kandil [1992] studied the effects of

angled wing-tip blowing on the behavior of trailing vortices.

1.3 Current Approach

Despite the fact that a tremendous amount of work has been done on the trailing

vortex problem, this complex flow phenomenon is still not very well understood,

especially when active control devices such as wing-tip blowing are employed.

The present study attempts to apply the CFD methodology to better

understand the formation and behavior of trailing vortices and to evaluate the

effects of axial and spanwise wing-tip blowing on these vortices for both fixed-

wing and rotary-wing aircraft applications. However, no numerical



CHAPTER 1. INTRODUCTION 6

computations are performed for the rotorcraft configuration because of the

enormous amount of computational effort required (see Srinivasan et al [1992]).

A geometrically simple and computationally cheaper fixed-wing configuration is

used instead. This is motivated by the findings of Tung et al [1983], who had

investigated the structure of trailing vortices generated by model rotor blades

and observed that the structure of the trailing vortices generated by rotor blades

was very similar to that generated by fixed-wing aircraft, and Spivey [1968],

who observed that the centrifugal effect due to the rotating rotor blade had very

little impact on the path of the trailing vortices.

1.4 Thesis Outline

This thesis is divided into six chapters. Following the introduction in this

chapter, Chapter 2 describes the equations governing the present research

problem, the approximations introduced, the turbulence models used, the

numerical algorithm and the artificial dissipation applied to solve these equations.

Chapter 3 covers the grid generation method and grid topology used. Chapter 4

discusses the implementation of the boundary conditions required by the Navier-

Stokes equations for cases with and without wing-tip blowing. Chapter 5

presents the computed results for the unblown cases, the axial and spanwise

blowing cases and compares them with the available experimental data and

theoretical analyses. The final chapter, Chapter 6, concludes the findings of this

research and outlines possible improvements and future work.
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Figure 1.1: Trailing vortices of a conventional fixed-wing aircraft (taken from

Kuethe and Chow [ 1986]).
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STRUCTURALLOAOFACTORS

Figure 1.2: Hazardous effects on smaller aircraft flying into the wakes of larger

aircraft (taken from Gessow [1976]).
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Figure 1.3: Schematic sketch of the wake structure for a single rotor blade in

hover (taken from Stepniewski and Keys [1984]).
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Figure 1.4: Blade-vortex interaction of a helicopter during forward and/or
descending flights (taken from White [1973]).
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Figure 1.5: Progression of cavitation around propeller blades (taken from

Trevena [ 1987]).
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Figure 1.6: Lanchester's drawing of the vortex roll-up (taken from Hackett and
Evans [1971]).
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I

Tap_ Tip

la_l Tip
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Figure 1.7: Wing-tip configurations for controlling trailing vortices (taken from

White [1973]).





Chapter 2

Governing Equations and

Numerical Method

2.1 Governing Equations and Approximations

2.1.1 The Navier-Stokes Equations

The governing equations used in the present trailing vortex study are the three-

dimensional Navier-Stokes equations. Under the assumptions of no body forces

and no external heat addition, the Navier-Stokes equations can be written in

conservation-law form in nondimensional Cartesian coordinates as follows (see,

for example, Peyret and Viviand [1975]):

c_a + egg cgF egG cgE_ + 3F o_G_
at o3¢ +"_-+"_-z=--_'x "_-"+ cgz (2.1)

where the conservative flow variables vector Q is def'med as

14
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i P_

Q=i p_,

e

(2.2)

The inviscid or "Euler" flux vectors E, F, G axe given by

...

pu

9u 2 + p

puv

puw

u(e + p)

-.

puv

PV2 + P I'

v;+%J
...

puw

pvw

pw2+p

w(e + p)J

(2.3)

and the viscous flux vectors E v, Fv. G, are given by

0 1 I'0% %
Ev = Re-' zy_ F, = Re-' zry

% %
_#,J _#,

"0"

r_

, G_=Re -1 _,_

. [3z .

(2.4)

The components of the viscous stresses axe

z_ = X(G +vy + w_)+ 2#u_

z, =X(u_ +vy+w_)+2#v,

z,, = _.(G + vy + w,)+ 2#w,

% = _, =#(u,+v_)

r,_ = % =#(v_ +w,)

#. = _---a.e, + u% + v% + wz_
Pr

# = _---O,e,+u_. +v%+w_
Pr

_ = _-----0 e. +u% + v% + wx,_
Pr z ,

(2.5)
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whereu: =au/&, v, = a,e,= &,/&, etc.

The density p is nondimensionalized by the freestream density p., the

velocity components u, v and w by the freestream speed of sound a., and the

total energy per unit volume e by p.a2.. Conforming to the usual convention, u

is in the wing chord (x) direction (positive aft), v is in the wing spanwise (y)

direction (positive outboard), and w is in the vertical (z) direction (positive

upwards). The coefficient of viscosity/z is normalized by its freestrearn value,

/z, and the time is normalized by c/a. where c is the wing chord. The

Reynolds number is defined as Re = p.a.c/l.t.. The Prandtl number P r is

defined as Pr = cep/k where ce is the specific heat at constant pressure and k is

the coefficient of thermal conductivity. Also, 7 is the ratio of specific heats

which for air is equal to 1.4.

follows:

The internal energy per unit mass ei is related to the total energy e as

e (u 2 + v 2+ w 2)
ei = -- - (2.6)

p 2

Pressure is related to the conservative flow variables through the equation of

state for a perfect gas

(2.7)

The fluid in the present study is also considered to be Newtonian (i.e., viscous

stresses are linearly related to the rates of strain), isotropic (i.e., having no

preferred direction), and that Stokes' hypothesis, which states that the bulk
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viscosity (A, + ]/,t) is zero, is satisfied. These assumptions are found to be valid

for aerodynamic applications.

2.1.2 Coordinate Transformation

Next, the Navier-Stokes equations are transformed from the Cartesian

coordinates (x, y, z, t) to a generalized, body-fitted, curvilineax coordinate

system (4, r/, _', z). This makes the formulation independent of the body

geometry thereby easing the specification of the boundary conditions. The

transformation from the physical domain to the computational domain also

allows standard differencing schemes for equi-spaced grid points to be used for

spatial derivatives. In addition, it also allows the thin-layer approximation (to be

discussed in Section 2.1.3) to be applied in a straight-forward manner. The

coordinate transformation is defined by:

=_(x,y,z,t)

77= rl(x, y,z,t) (2.8)
_=_(x,y,z,t)

T=t

where t and _: axe independent variables of time in the physical and transformed

coordinates, respectively. The airfoil surface in the chordwise direction is

transformed to the _-coordinate, the spanwise direction is transformed to the r/-

coordinate and the _'-coordinate is normal to the wing surface. Chain rule is

applied in the transformation procedure which can be found in Viviand [1974]

and Vinokur [1974]. The resulting transformation Jacobian is
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X_ X n X_I
J=l/dety_ y, y_ (2.9)

Z_ Z n Z¢

where x¢ = _gx/c_, x, = oax/_grT, etc, and the transformation metrics axe given by

_,, = J (y,_z_- y_z,7)

_, = J (x:z. - x.z: )

_ = J (x,TY_- x_y,7)

fix = J (yqz¢ - y_z:)

fly = J (x_z¢ - x¢z_ )

rT_= y (x:y_-x_y_)

(2.10)

5x = J (Y_Z,! - Y,TZ_ )

5, = J (x_z_- x_z. )

5_ = J (x_Y,7 - x,_y¢ )

_, =-x,_,, - y,_, - z_

rl, = -x,rL, - y_rly - z,rl_

5, = -x,Sx - Y,5, - z,5,

(2.11)

For the present study, stationary grids (i.e., no body motion) are considered and

the metric time derivative terms are zero. The transformation Jacobian and

metrics have their geometric interpretations: the transformation Jacobian is the

inverse of the local grid cell volume, and the metrics are grid cell area

projections. They give good indication on the grid quality, for example, whether

the grid is stretched too rapidly.

The transformed Navier-Stokes equations can be written in strong

conservation-law form (see, for example, Anderson et al [1984]) in a generalized

coordinate system ( _, 77, 5, "r) as follows:

o_Q o_7 8_" o_G 1

o_--_+"_-+_0 + o_"-_= R-'_
(2.12)
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where the symbol "^" indicates transformed variables. The transformed,

conservative flow variables vector and the inviscid flux vectors are

e

I " 1puV + 77,,p

p=j-l| /,vV+,7,p[. _-J-'
| owv+..,./
I_(e+ p)V- rl,pJ

pu puU + _,p

O=j-_ pv, _.=s-' pvv+¢: J
pwV+_: I

(e+p)U-_,pJ

pW

pu W + ¢_p

pvW +_,p

pwW + _p

(e+p)W-_,p

(2.13)

(2.14)

where the variables U, V and W are the contravariant velocity components. The

contravariant velocity U is the component of velocity parallel to the wing surface

and in the direction of the wing chord, V is the component of velocity in the

spanwise direction, and W is normal to the wing surface. They are related to the

velocity components, u, v, and w, as follows:

v=_,+_xu+_,v+_:
V = 77,+ rhu+ r/,v+ r/,w (2.15)

w=_,+_.,,+_,v+_,w

The transformed viscous flux vectors are
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0

+4,0, +

0

rhz = + r/y'r_, + r/'r_

rhlr_ + r/,% + rh_,,

,TA+ rlA+ nA

0

(2.16)

(2.17)

(2.18)

2.1.3 Thin-Layer Approximation

Most aerodynamic applications of practical interest, including the trailing vortex

problem, involve high Reynolds number flows. For the high Reynolds number

flows, the viscous effects are confined to the thin shear layers near the body

surface, in the wake and in the trailing vortex core. Due to the limitations in

computer memory and computational time it is necessary to concentrate the

available grid points in these thin shear layers. To resolve the corresponding

derivative components in the viscous terms, fine clustering of grid points has to

be made across these thin shear layers. This results in grid spacing that is fine,

normal and near to the surface, and that is relatively coarse, tangential to the
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surface. With this type of grid, even if the full Navier-Stokes equations were

solved, the viscous terms possessing velocity gradients tangential to the body

would not be resolved because of insufficient grid density along the surface. For

most cases of interest (i.e. high Re flows), however, these terms are negligible

anyway. Therefore, it is justifiable to eliminate from the calculation the viscous

fluxes associated with the directions parallel to the surface, i.e., the _- and r/-

directions. This approximation is easily applied since the equations are already

transformed into the body-fitted computational domain.

The thin-layer approximation is motivated by the success of the boundary

layer theory. All the assumptions, except one, made in the boundary layer

theory are adopted in the thin-layer approximation. In the boundary layer

theory, pressure is assumed to be constant across the boundary layer. However,

the thin-layer approximation is less restrictive: it retains the normal momentum

equation and allows pressure variation across the boundary layer.

Applying the thin-layer approximation (i.e., retaining only the 0/0_"

terms and eliminating all the c)/O_ and 0/Or/ terms in the viscous stress

components) then, the non-dimensional, three-dimensional, unsteady Navier-

Stokes equations in conservation-law form

curvilinear coordinates become:

0P
0S÷- +V0 ÷0-?-----

in transformed, body-fitted,

(2.19)

where
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with

0

#m_u:+ (/_/3)m_',

#m_v_+ (/_/3)m_',
/_m_w:+ (/_/3)m_',

+ +0.v+O.w)

1 2 v 2 w2)_ + t¢m 3 =-_(u + + er(y-1) (a2)'

(2.20)

(2.21)

2.2 Numerical Algorithm

An implicit, noniterative, time-accurate, finite difference scheme developed by

Fujii and Obayashi [1986a, 1986b] is used to solve the three-dimensional

compressible thin-layer Navier-Stokes equations. The scheme, which is first-

order accurate in time and second-order accurate in space, employs the LU-ADI

factorization. The basic structure of the algorithm is based on the Beam-

Warming algorithm (see Beam and Warming [1976, 1978]) and incorporates the

Steger-Warming flux vector splitting technique (see Steger and Warming [1981])

and diagonally dominant factorization (see Pulliam and Chaussee [1981] and

Pulliam and Steger [1985]). The development of the algorithm is outlined below.
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2.2.1 Beam and Warming Algorithm

The Beam and Warming algorithm (see Beam and Warming [1976, 1978])

employs an implicit, approximately-factored, non-iterative technique. Implicit

methods are preferred over explicit methods especially in obtaining the steady-

state solution. A large time step can be used in implicit methods to reach the

steady-state solution rapidly; whereas explicit methods suffer the disadvantage of

having a severe restriction on time step size in order to maintain stability.

A first-order accurate implicit time integration scheme is selected to

march the solution of the unsteady Navier-Stokes equations in time. Second- and

higher-order time accurate schemes are not used since they require the storage of

the solution from previous time levels and result in a significant increase in the

computer memory requirements. Discretizing Equation (2.19), using the first-

order accurate backward Euler time integration scheme gives

+ =0 (2.22)

where h is the time step, n + 1 is the time level at which Q is desired, n is the

previous time level at which Q is known everywhere, and _' = O.(nh).

To have a non-iterative solution method, the flux vectors are linearized as

follows:
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_.÷i=_. +A"A_g'+O(h2)

P"÷_=P"+B"_0"+O(h')

_""=_'+C"AO_"+O(h_)

_"÷_=_"+M"_"+O(h_)

(2.23)

where A_Y' = 0 "+l -_ and the flux Jacobian matrices A",

given by:

A"= B"= =---_

B", C" and M" are

(2.24)

These flux Jacobian matrices are derived analytically in Pulliam and Steger

[1980].

The alternating direction implicit (ADI) algorithm was used by Beam and

Warming [1976, 1978] to replace the inversion of one huge matrix (which

would be prohibitively expensive to compute) with the inversions of three block

tridiagonal matrices, one for each direction, using a block tridiagonal solver. By

applying the ADI algorithm, Equation (2.22) can be written in the "delta form"

as follows:

[I + ibh6_C" - iohRe-l_¢J-'M"J- i,D,I_ ]AO" (2.25)

--1 ^n

=-i_h[6_E"+6,_P"+6_d"-Re ,5,S:]-i,,[DEI,+o_l.+oel_]0"

where I is the identity matrix. D z and D e are, respectively, the implicit and

explicit artificial dissipation terms required for numerical stability. The "delta
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form" is normally used for solving steady-state problems since the final solutions

do not depend on the choice of implicit operators once steady state is reached

(i.e., A_ --->0).

Notice that the solution blanking feature of the chimera scheme (see Benek

et al [1985]) is incorporated into Equation (2.25) by including an integer i_

which is assigned a value of zero or one at every grid point. If ib = 0, AQ n

becomes zero and the solution remains unchanged at this grid point. If i_ = 1, the

grid point is not blanked and is solved as part of the implicit solution. The

usefulness of this blanking feature in modeling wing-tip blowing is discussed in

Chapter 4. Fejtek and Roberts [1992] employed this feature for tilt-rotor

computations.

2.2.2 The Diagonally Dominant Factorization

By applying the diagonally dominant factorization proposed by Pulliam and

Chaussee [1981], the block tridiagonal matrices can be transformed into scalar

tridiagonal matrices which are much cheaper computationally to invert.

Recognizing that the flux Jacobian matrices A, B and C each has real eigenvalues

and a complete set of eigenvectors, they can be diagonalized by similarity

transformations as follows:

Aa=T_'_'ATg, A.=T_'BT, 7, Ac=T_¢ICT; (2.26)

where A a, A n and A c are diagonal matrices containing the eigenvalues of

matrices A, B and C, respectively. The elements of the diagonal matrices are the

characteristic speeds of the flow. For example,
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"U 0

0 U

AA= 0 0

0 0

0 0

0 0 0

0 0 0

U 0 0

0 U+a4_+_+_ 0

0 0 U-a4_ + _ + 4:

(2.27)

Analytical expressions for the similarity transformation matrices T¢, T n and T;,

their inverse matrices, and the other diagonal matrices can be found in Pulliam

and Chaussee [1981].

In the _-direction, for example, the Beam-Warming ADI operator can be

written in the diagonal form as

[I + ib h tS, A - ib D, [_ ]= T ¢T_I + it,ht$, (T¢AaT_¢ _)-i b T, D,[, T_¢l

---T¢[ I + ib h3gA a -it, J-le/3_J]T_¢'

(2.28)

where the implicit smoothing factor e t = Ktho" a with K_ a user-specified

constant, h the time step and a a the spectral radius of the matrix A.

Moving T¢ and T_¢1 outside of the difference operator t$, introduces an

error which renders the method (at best) first-order accurate in time (see

Pulliam and Chaussee [1981]). For steady-state calculations, the fight hand side

of Equation (2.25) goes to zero as A_Y' --->0, and the converged solution obtained

using the diagonal algorithm is identical to that obtained from the original Beam-

Wanning ADI scheme since the fight hand side is the same for both methods.
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2.2.3 The LU-ADI Algorithm

The scalar uidiagonal matrices of the implicit operators can be further reduced

to products of lower and upper bidiagonal matrices (see Obayashi and Kuwahara

[1986], and Fujii and Obayashi [1986a, 1986b]). This results in a further

reduction in the computational cost.

By decomposing the central differencing in Equation (2.28) into two one-

sided differences using the flux vector splitting technique of Steger and Warming

[1981], the _-direction operator becomes

[I+i_hScA-i_D,I,]-T,[I+i_V¢A:+ibA,A-A] _' (2.29)

with

hA +_.IAAI)+_.j-%j (2.30)

where A_ contains aft the positive eigenvalues and A_ contains all the negative

eigenvalues, e I is the implicit artificial dissipation term, and j-1 is the inverse of

the Jacobian evaluated at the central point.

Using first-order upwind differences, Equation (2.29) can be written as

[I+ibh_5,A-ibD_[,]=T¢[LA+D,_+UA]T_ _ (2.31)

where L A, D A and Ua are lower bidiagonal, diagonal and upper bidiagonal

matrices, respectively, and are given by
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V a = i, A_,.,

(2.32)

Applying the diagonally dominant factorization (see Lombard et al [1983]) gives

La + DA +UA =(LA + D,t)D_,I(Da +UA)+O(h _) (2.33)

where higher order terms are dropped since DA is of order 1 and La and UA are

of order h.

Substituting Equation (2.33) into Equation (2.31), the LU factorization for

the ADI operator in the _-direction becomes

[l+ibh_¢A-ibDl¢] =r,[L,+o,] +v,)]r, ,
lower bidiagonal upper b_diagonal

(2.34)

A similar procedure is followed for the 77- and _'-directions. The block

tridiagonal matrix inversion for each direction has been reduced to a product of

a lower and an upper scalar bidiagonal matrix. It is implemented by performing

a forward sweep followed by a backward sweep.

To ensure adequate stability of the thin-layer viscous terms while using the

diagonally dominant factorization, it is required to add a small amount of

additional dissipation to the split diagonal matrices A c (see Fujii and Obayashi

[1986a]) as follows:

._ h A
A c ='_( c+lAcI)+J-'e,J+ vt (2.35)
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where

2.(;_+;,_+;t)
RepA(

(2.36)

Finally, the LU-ADI algorithm can be summarized as follows:

r,(L,+o,)D_'(o,+v,)G'r,(t, +O,)D;(D,+U,)_'
r,(L_+o_)o:(o_+u_)r?a¢

=-ibh[_,E'+'nF"+_¢G"--_e_¢S:l-ib[Del,+ Del,+ De[el 0"

(2.37)

Analytical expressions for T_'T_ and _IT, and their inverses can be found in

Pulliam and Chaussee [1981] to reduce the computational effort. The inversion

process in each direction consists of one forward scalar sweep and one backward

scalar sweep.

2.3 Turbulence Model

For high Reynolds number flows, turbulence closure is required to account for

the Reynolds stresses. By relating the Reynolds stresses to the rates of strain

using the Bousinesq assumption, the effect of turbulence can be approximated by

an eddy viscosity which accounts for the additional mixing caused by the

turbulent flow. A two-layer algebraic turbulence model of Baldwin and Lomax

[1978] is used in the present study. Since jet flows possess different turbulence

characteristics, an eddy viscosity model proposed by Roberts [1987] for turbulent

curved wall jet is implemented in the wall jet region for the wing-tip blowing

cases.
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2.3.1 The Baldwin-Lomax Model

The eddy viscosity is evaluated in inner and outer layers,

"(l.t,)i,_, Y<-Y_o_,,,

U'= (t.t,)_,,, y>y=.,.
(2.38)

where y is the normal distance from the wall and y_,_,,_ is the smallest value of

y at which the inner and outer values of/.t, are equal.

The eddy viscosity in the inner region is estimated using the Prandtl-Van

Driest formulation:

(#,)_,,, = pl2[col (2.39)

of the vorticity (IV x QI) and/is the "mixing" lengthwhere Icolis the magnitude

scale given by

I= ky[1- exp(- y+/A +)] (2.40)

where k = 0.4, y+ = yp.__.W_/l.tw with the subscript w denotes values at the wall

and A ÷ = 26.

The Clauser formulation used in the Cebeci model for the outer layer is

replaced by

(#,)ou,,_ =KCc, F,,_F_a,_,(Y)

where the Clauser constant K = 0.0168, Cc_ = 1.6 and

= 2 FF,_, rrfin(y,_,C,,ky,_U_it/ ,_)

(2.41)

(2.42)
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with C., = 0.25 and U_I is the difference between the maximum and the

minimum total velocity magnitudes in the profile along the y-direction. The

The values ofminimum total velocity magnitude is zero except in the wakes.

y_ and F_ are determined from the function

F(y) = y Ic0111- exp(- y+/A ÷)] (2.43)

The quantity F_ is the maximum value of F(y) in the profile along the y-

direction, and Ym_ is the value of y at which it occurs. The function FK_b (y) is

the Klebanoff intermittency factor given by

Fxu b(y) = [1 + 5.5(Cxuby/y_ )6 ]-1 (2.44)

with Cn, b = 0.3.

The total effective viscosity can then be obtained as the sum of the laminar

viscosity (/.t_) and the turbulent viscosity (#,):

bt =/_ +/z, (2.45)

The laminar viscosity is determined from Sutherland's formula:

/.t_ =/lr_ T+198.6 °R

where T is the temperature in degrees Rankine ("R).

(2.46)

The total effective coefficient of thermal conductivity can be obtained by

k = kt + k, = celut + cjl, (2.47)
Pr_ Pr,
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For the range of temperatures and pressures of interest here, for air, the laminar

Prandtl number Pr_ = 0.72 and the turbulent Prandtl number Pr, = 0.90 (see,

for example, Anderson et al [1984]).

2.3.2 Turbulence Model for Wall Jet

The algebraic eddy viscosity model developed by Roberts [1987] for turbulent

curved wall jets is used in the wall jet region on the wing surface for the axial

wing-tip blowing cases. This model has been previously used in the leading edge

blowing for delta-wing (see Yeh et al [1989]) and tilt-rotor (see Fejtek and

Roberts [1992]) applications.

Assuming self-similar mean velocity profiles, the eddy viscosity of a wall

jet is given by

: I /2!bV,_
#, 4k 2

(2.48)

where K=0.073, k=0.8814, V_ is the maximum velocity, _ is the distance

normal from the wall, b is the normal distance from the wall where the velocity

is V_/2, and _,_ is the normal distance from the wall where the velocity is

V,_. By correlating with the experimental results, b is found to have a value of

about 7_'_,_. For _ > _'_, _'/_, is set to one.

By including the effects of the wall curvature, the eddy viscosity is

modified as follows:

= 7__ff_KVr_, _ 1 3V/oa_.,t.t, 4k _
(2.49)
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where R is the radius of curvature of the wall.

from the jet exit slot to the flow separation point.

This wall jet model is applied

2.4 Artificial Dissipation

The Beam-Warming algorithm, although unconditionally stable for two-

dimensional flows, is unconditionally unstable for three-dimensional flows (see

Pulliam [1984]). Artificial dissipation is therefore necessary to stabilize the

scheme. In addition to the explicit artificial dissipation, implicit artificial

dissipation is added to increase the stability bound imposed by the explicit

artificial dissipation and to speed up the convergence rate.

The commonly used fourth-order artificial dissipation tends to produce an

undesirable oscillatory solution near flow discontinuities such as shock waves.

The second-order artificial dissipation, on the other hand, is too dissipative for

other part of the flowfield even though it is able to damp out oscillations near

flow discontinuities. An artificial dissipation model employing a nonlinear

combination of second-order and fourth-order smoothing proposed by Obayashi

et al [1988] is used in the present study.

The explicit smoothing term, for the _-direction, is given by

where
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= matrix containing the flux limiter function

e e =Keho" A

K e = input constant

o"A = spectral radius of flux Jacobian matrix A

=IUI+ a4_ + _ + _

The flux limiter function • varies from 0 to 1 depending the local flow

gradient. For a relatively smooth solution, a value near one is used so that only

the fourth-order dissipation is applied. Whereas for large flow gradients, a

value near zero is used so that the second-order dissipation terms become

dominant. More details on the flux limiter function are discussed in Obayashi et

al [1988].





Chapter 3

Grid Generation

3.1 General Remarks

Grid generation is an essential part of the overall computation of a fluid flow

problem. Over the years various grid generation techniques have been

developed and they can be broadly categorized into structured and unstructured

grid generation methods. The structured grid generation methods can be further

sub-divided into three main categories: (1) analytic methods, (2) algebraic

methods, and (3) schemes based on partial differential equations. Each of these

methods has its strength and weaknesses. These methods are discussed in more

details in Anderson et al [1984].

To fully exploit the advantages of the grid generation method to be used,

it is important to have a good understanding of the nature of the governing

equations, the geometry of the flow field, and the expected flow behavior. For

example, schemes based on partial differential equations axe very attractive for

35
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generating very smooth grids and allowing good grid spacing and orthogonality

control. Their greatest drawback is that they are computationaily expensive

especially for three-dimensional applications. So far, most of the trailing vortex

studies have employed geometrically simple lifting surfaces. Wings of

symmetrical airfoil section, no twist, and no taper have been commonly used

(see, for example, Spivey [1968], Yip and Shubert [1976], McAlister and

Takahashi [1991], and Chow et al [1993]). The simple geometry allows a three-

dimensional grid with good grid properties to be generated economically using

schemes based on partial differential equations. This is achieved by first

generating a two-dimensional grid at one spanwise station using schemes based

on partial differential equations. A three-dimensional grid enveloping the

complete lifting surface and the desired flow domain is then obtained by

"stacking" the two-dimensional grid along the wing span. A grid generation

method based on elliptic partial differential equations first proposed by

Thompson et al [ 1974] is employed to generate the two-dimensional grid. Details

of the method are presented in Section 3.2.

Grid generation methods based on the unstructured grid philosophy have

the advantage of tackling problems with complex geometry and flowfield

elegantly. Strawn [1991] applied the unstructured adaptive-grid method to

calculate the trailing vortex flowfield by solving the Euler equations. One

difficulty encountered by Strawn [1991] was that the aspect ratio of the

tetrahedral elements became more and more nonuniform for regions farther

downstream. Flow solutions became deteriorated quickly in these regions.
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3.2 Elliptic Grid Generation Method

3.2.1 Thompson, Thames, and Mastin Method

The ability of the elliptic grid generation method to generate very smooth and

well behaved grids has made it one of the most widely used grid generation

techniques for aerodynamic applications. The method was first proposed by

Thompson, Thames, and Mastin [1974]. It was motivated by the smoothness

properties associated with elliptic partial differential equation solutions.

Successful applications by Thompson et al [1975, 1977a, 1977b] further

popularized this method.

In the present application, the elliptic grid generation method is used to

generate a smooth, body-fitted, curvilinear two-dimensional grid. Grid points

along the inner boundary, which includes the airfoil surface, and the outer

boundary are specified. Interior grid points axe first obtained by interpolation.

They are subsequently smoothed by the elliptic grid generation scheme which is

outlined below.

The mapping of the physical domain to the computational domain is

definedby thePoisson equationsasfollows:

=
(3.1)

where (x,z) are the coordinates in the physical domain and (4, _') are those in

the computational domain. The source terms, P and Q, are used to control the

grid properties. Grid points in the computational domain, for the two-
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dimensional application, are rectangular and evenly-spaced. Thus, in this way,

(4, _') are known. The unknowns are (x,z) in the physical domains. To

determine (x,z) the dependent and independent variables in Equation (3.1) are

interchanged. This results in the following transformed equations:

ax,,- 2fix,, + y x, =-J2( px, + Qx_)
(3.2)

az,,-2#z,,+ rz.=-J'(ez, +Qz:)

where

= X_X_ + Z_Z_

2 2

(y= X_ + Z_

J = x_z¢ - x_z¢

(3.3)

Equation (3.2) can thus be discretized and solved numerically as long as P and Q

are specified. For the present application, the alternating direction implicit

(ADI) algorithm, which uses the approximate factorization to convert the left-

hand-side matrix of Equation (3.2) into two tridiagonal matrices to enhance

computational efficiency during matrix inversion, is employed. Details of the

implementation of the algorithm can be found, for example, in Hoist [1983].

3.2.2 Middlecoff-Thomas Algorithm

It is noticed in Equation (3.1) that when P = Q = 0 the Poisson equations are

reduced to the Laplace equations. This will provide no control over the grid

point spacing near a boundary. The grid points tend to be pulled away from the
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surface (see, for example, Sorenson and Steger [1980]). The specification of P

and Q therefore becomes a main concern. The original P and Q terms proposed

by Thompson et al [1974] require four user-specified coefficients to control the

grid properties. The major setback of this proposal is that these user-specified

coefficients are rather difficult to obtain in a relatively automatic way.

To overcome this difficulty, Steger and Sorenson [1979], and Middlecoff

and Thomas [1979] devised some automatic grid control techniques that

significantly reduce the number of free parameters that need to be specified. In

the present application, the Middlecoff-Thomas algorithm, which is outlined

below, is employed.

The P and Q

terms of two other functions # and V, which are given by

terms are defined by Middlecoff and Thomas [1979] in

(3.4)

Substituting Equation (3.4) into Equation (3.2) gives

+ )- x,,+ +
(3.5)

The _(_,_') and g/(_,() terms are established in an automatic way from user-

specified boundary conditions on x and z as follows:

For _ = constant boundaries,
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_(¢_,c)=-x./_l,=,_for Ix,l>lz,I

(3.6)

For ( = constant boundaries,

dp(_,_=.)=-x,,lx_l,=_ forI_01>l_,l
_(¢'¢")=-=°,/_,1,_-_.forIz,l>lx01
¢(¢,_)=-x,Jx,l¢..¢- forIx,l.lz°l
dp(_,_,)=-z,,/z¢l¢._."forIz_l.lx,I

(3.7)

All derivatives are discretized using central differences. Interior values of

and _ are obtained using linear interpolation.

The Middlecoff-Thomas algorithm has been proven to be simple and

effective in grid control. Furthermore, interior grid point distribution tends to

approximately mimic the boundary distribution of grid points. Grid points that

are clustered in one direction on the boundary will tend to remain clustered in

that same fashion in the grid interior. This allows the user a better control in

clustering grid points to capture regions of high flow gradient.
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3.3 Grid Details

3.3.1 Geometry of Wing

To illustrate the grid generation used in the present trailing vortex study, a semi-

span rectangular wing with a constant and untwisted NACA 0015 symmetric

airfoil profile along the entire span and a rounded wing-tip shape is used. The

wing has a full-span aspect ratio of 6.75. The same geometry was used in the

fixed-wing trailing vortex experiment of McAlister and Takahashi [1991], which

was conducted in the NASA Ames 7- by 10-Foot Subsonic Wind Tunnel No. 2.

A perspective view of the semi-span wing is shown in Figure 3.1.

3.3.2 Two-Dimensional Grid

Due to the simplicity of the geometry, a two-dimensional grid is In'st generated

using the elliptic grid generation method (discussed in Section 3.2). Symmetry

of the airfoil section also enables only the upper half of the grid to be generated

(see Figure 3.2). This further reduces the cost in grid generation.

As discussed in Section 2.1, the application of the thin-layer

approximation to the governing Navier-Stokes equations has limited the

computer memory and computational time requirements to a manageable level.

To resolve the viscous fluxes normal to the lifting surface, which are the

dominant contribution to the overall viscous fluxes, very fine grid points must be

clustered near the lifting surface so as to capture the high velocity gradient in the

boundary layer. In addition, very fine grid points must be clustered aft of the

trailing edge in order to capture the wake, the lifting vortex sheet, and the
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trailing vortex effects. The C-grid topology, as opposed to the O- and H-grid

topologies, is selected because grid points can be clustered more efficiently to

capture these flow features. Furthermore, the O-grid topology has a mapping

singularity at the trailing edge of all sharp-trailing-edge airfoils; and the H-grid

topology places a singularity at the leading edge of all blunt-leading-edge

airfoils. The C-grid topology, on the other hand, is free from these singularity

mapping problems.

Fine grid clustering in the streamwise direction is also required at the

leading edge of the airfoil section to capture the high velocity gradient and the

high leading edge suction peak. The trailing vortex problem also demands fine

grid clustering at the trailing edge in the streamwise direction, especially near

the wing-tip region. It was observed (see, for example, Spivey [1968], Yip and

Shubert [1976], McAlister and Takahashi [1991], and Chow et al [1993]) that

high suction peak (or peaks) occurred on the upper surface of the wing-tip

region due to the presence of the rolled-up tip vortex (or vortices depending on

the geometry of the wing-tip). To capture this effect, fine grid has to be

clustered there.

Aft of the trailing edge near the wing tip region, the trailing vortex

continues to develop and roll up. The distance required for the trailing vortex to

completely roll up depends on the aspect ratio, lift distribution, etc, of the wing

(see Spreiter and Sacks [1951]). Fine grids must therefore be clustered aft of the

trailing edge near the wing tip region for some downstream distance to capture

the formation of the trailing vortex.
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To ensure fine and smooth grid clustering in the streamwise direction near

the leading and trailing edges of the airfoil section, a cosine stretching function is

employed. Stretching is also employed aft of the trailing edge in the downstream

direction to ensure fine clustering near the trailing edge and smooth stretching of

grid farther downstream. It is found to be difficult to use the cosine stretching

for grid points aft of the trailing edge. Smooth grid transition near the trailing

edge cannot be obtained with the present amount of grid points available because

the downstream distance is much greater as compared to the chord length. A

geometric stretching is used instead to cluster grid points aft of the trailing edge.

The geometric stretching is probably the simplest stretching method. To

distribute N number of points along a curve of length S, with the arc length

between the first two points of AS, the total length can be written as

AS + a AS + o_2 AS + ... + otN-2 AS + ot_-_ AS = S (3.8)

where cc is the stretching factor.

The Newton-Raphson iterative root finding method can be used to

determine o: such that Equation (3.8) is satisfied. It is implemented by

multiplying Equation (3.8) by a and then subtract this new equation from

Equation (3.8). This results in the following equation:

(a-1)S-(aN-1)AS=O=f (3.9)

Notice that a function f is defined in the iterative procedure. The objective of

the iteration is to determine a value t_ such that f = 0 is satisfied within a

desired tolerance, ct is determined iteratively via
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f
a.+_ = a. --- (3.10)

f'

where n is the iterative time step and

f" = S- N a s-I AS (3.11)

This method does not provide any control on the size of the last grid spacing. A

more sophisticated method developed by Vinokur [1983] allows control on the

last grid spacing. However, for external flow aerodynamic applications, the

control of the size of the last grid spacing is not critical. Geometric stretching is

also used to generate grid points normal to the wing surface.

3.3.3 Three-Dimensional Grid

To generate a three-dimensional grid, the two-dimensional grid, illustrated in

Figure 3.2, is "stacked" along the wing span starting from the upper surface of

the wing center-plane. The two-dimensional grid is then wrapped around the

wing-tip to form a rounded wing-tip. "Stacking" of the two-dimensional grid

continues until the lower surface of the wing center-plane is reached.

Orthogonality of the two-dimensional planes with the wing surface is ensured

during the "stacking" process. A cut-away-view in the y-z plane of the grid

generated is shown in Figure 3.3. (The standard right-hand aeronautical

convention is used for the x-y-z body-axis coordinate system: the origin of the

body-axis coordinate system is at the intersection of the wing center-plane and

the wing leading edge, x is positive from the leading edge to the trailing edge, y

is positive toward the tip of the pilot's right wing, and z is positive upward.)
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Similar to the experimental setup, only the semi-span of the wing is

considered due to the symmetry of the flow configuration. Implicit in the use of

a plane of symmetry is the assumption that the flowfields on either side of the

center-plane are a mirror image of each other. To facilitate the specification of

the boundary condition at the center-plane, the two-dimensional grid actually

extends one grid plane inboard of the plane of symmetry; and the distances of

these two planes from the plane of symmetry are equal. Flow conditions at this

plane are forced to be those at the first plane from the center-plane on the pilot's

right wing to preserve symmetry of the flow. This arrangement is deemed to

simulate the actual flow more closely as compared with the experimental setup

whereby boundary layer growth from the wall at which the wing is mounted

may interfere with the actual flow.

Cosine stretching is used to cluster grid points in the spanwise direction.

This allows fine clustering of grid points around the wing tip so as to capture the

trailing vortex better. A cut-away isometric view of the wing and the three-

dimensional computational grid is shown in Figure 3.4.

Most of the results presented are based on computations using 83x69x61

(i.e., 349,347) grid points. There are 83 points in the _-direction with 48 points

defining half of the airfoil section and 35 points downstream of the trailing edge.

The grid extends 8 wing chords from the trailing edge to the outflow boundary.

69 two-dimensional grid planes are "stacked" in the spanwise u-direction with

25 planes defining the rounded wing tip. There are 60 grid points stretch from

the wing surface to the outer boundary in the F-direction. The grid extends to 6
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wing chords normal to the wing surface and 6 wing chords ahead of the wing

leading edge.
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Figure 3.1: Geometry of the semi-span wing having a NACA 0015 symmetric

airfoil section, with no twist, no taper, no sweep, and a rounded wing-tip.
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Figure 3.2: Two-dimensional grid at the wing center-plane showing the C-grid

topology. Fine clustering of grid points at the leading edge, the trailing edge, aft

of the trailing edge, and close to the wing surface.
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Figure 3.3: A y-z plane view (looking upstream) of the three-dimensional grid

showing the rounded wing-tip of the wing and the fine clustering of grid points

around the wing-tip to capture the wing-tip vortex.
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Figure 3.4: A cut-away isometric view of the wing and the three-dimensional
computational grid.



Chapter 4

Boundary Conditions

4.1 General Remarks

Boundary conditions at the flowfield domain boundaries are the driving force in

determining the overall flowfield solution. In the implementation of the

numerical algorithm, the boundary conditions can be specified either implicitly

or explicitly. When specified implicitly, the boundary conditions axe coupled

and coded into the numerical algorithm. Explicit specification of the boundary

conditions, on the other hand, requires that flow variables at the boundaries to be

evaluated using the most recent solution. Due to the fact that explicit treatment

of the boundaries leads to a far more simple and flexible scheme, where

boundary conditions become a modular element that can be put in or pulled out

of a computer program without disturbing the implicit algorithm (see Pulliam

and Steger [1980]), it is implemented in the present study. The flexibility of the

explicitly specified boundary conditions also allows wing-tip blowing (to be

discussed in section 4.3) to be incorporated into the numerical study easily.

51
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4.2 Boundary Conditions

On the surface of the wing, no-slip boundary condition is imposed, that is, all

components of velocity are set to zero (u = v = w = 0) for viscous (Navier-

Stokes) computations.

The pressure on the wing surface is obtained by solving the normal

momentum equation (see Steger [1977] and Pulliam and Steger [1980]):

p,(¢_ +¢,_,+¢,_)+p.(_ +_,_,+_)+ p_(_+_,_+_)

=-pU(_,,u, +_,v, +_w,)-pV(_,,u,7 +_,v,_ +_w,7 ) (4.1)

-p._/_ +_,_+_
=0

Notice that p. = oap/o3n= 0 at the body surface and n is the direction normal to

the body surface.

By setting U and V to zero at the body surface for viscous computations

and discretizing the derivatives using second-order central differences in the _ -

and o-directions and second-order one-sided differences in the F-direction, p at

the body surface can be calculated by solving the implicit equations using the

approximate factorization technique.

Once the pressure at the body surface is determined, the total energy per

unit volume, e, can be calculated using Equation (2.7). By assuming adiabatic

wall conditions (i.e., no heat flux across the wall or o,_T/cgn= 0), and using the

relation ,gpfign = 0 at the wall, it is necessary that cgp/t_n = 0 at the body surface

as well from the ideal gas equation (p = pRT). The density at the body surface is
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then calculated using the zero-order extrapolation from the nearest point normal

to the surface.

Due to the symmetry of the flowfield only half of the wing span is

modeled to reduce the computational cost. The symmetric boundary conditions

at k = 1 and k = 3 (which are next to the plane of symmetry or mid-span: k = 2)

are imposed as follows:

P_ = P3

(pu),=(pu),
(pv),=-(pv),
(pw),

e_=e3

(4.2)

For the outer boundaries, freestream conditions are imposed on the inflow

boundary whereas characteristics-based formulation is applied at the outflow

boundary. For example, the present trailing vortex problem involves subsonic

flow in three dimensions. In this case, only one state variable is to be specified at

the outflow boundary and the remaining four variables must be obtained from

the characteristic relations because four of the characteristic velocities are

positive and the fifth one is negative. Zero-order extrapolation is used in

obtaining the four variables at the outflow boundary from the interior solution.

4.3 Wing-Tip Blowing

The blowing intensity is quantified by the blowing momentum coefficient, C_,

which is defined as
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ffp,.,v,.,v,.,,a,°
C_ = _

q.S,
(4.3)

where p_,, is the jet exit density, V_,, is the jet exit velocity, At, , is the jet slot

area, q. is the freestream dynamic pressure, and S,,, is the wing reference area,

which is simply the full-span wing planform area.

4.3.1 Actuator Plane Concept

For the case of axial wing-tip blowing, a step in the wing surface is formed by

the blowing slot. To simply the grid generation required in this study, the jet

slot is not resolved and an actuator plane concept is employed to model the wall

jet. A schematic sketch of the actuator plane concept is presented in Figure 4.1.

The actuator plane is, in effect, a discontinuity imposed at the jet slot location

whereby the flow variables undergo a discontinuous change and the jet is

modeled as a one-sided source of mass, momentum and energy. This concept has

been successfully applied to the F-18 forebody (see Tavella et al [1990]), an

ogive cylinder (see Font and Tavella [1991]), a tilt-rotor (see Fejtek and Roberts

[1992]) and a delta-wing (see Craig [1993]). TaveUa et al [1990] compared the

results obtained by using the actuator plane concept with those obtained by Yeh

et al [1989] who resolved the jet slot and found that the differences were not

significant.

For the case of spanwise wing-tip blowing, no step on the wing surface is

formed by the jet slot. The jet can therefore be modeled at the wing surface in a

straight-forward manner.
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4.3.2 Solution Blanking Feature of Chimera Scheme

In modeling the wall jet for the axial wing-tip blowing case, L,, number of grid

points normal to the wing surface at the jet slot location are used to define the jet

slot thickness. In order to avoid the flowfield solution being solved at the jet slot

location, Craig [1993] used the multi-zonal approach and defined the jet slot

location at the inter-zonal boundary. This approach is not very practical because

when one changes the jet slot location, for example for parametric study, one has

to change the entire computational grid and re-calculate the entire flowfield.

The approach of employing the solution blanking feature of the chimera scheme

adopted by Fejtek and Roberts [1992] is instead used in the present study. By

blanking off the implicit solution at the jet slot location and updating the solution

explicitly with the "interior boundary conditions" defined by the jet, the jet slot

can be located anywhere in the flowfield. The allows great flexibility in locating

the jet slot without confining it to the inter-zonal boundary.

The static pressure at the jet slot exit is assumed to be the local static

pressure just outside the jet width and constant across it for the axial wing-tip

blowing case. For the spanwise wing-tip blowing case, the static pressure at the

jet slot exit is also assumed to be the local static pressure; but it is allowed to

vary across the jet width. Wing-tip blowing is applied by changing the total jet

plenum supply pressure which is normalized by the freestream ambient pressure,

i.e., pm,_/p..

The temperature at the jet slot exit is assumed to be freestream ambient.

The jet exit density, p_,,, is calculated using the ideal gas equation. By assuming
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isentropic expansion of the compressed air from the plenum pressure, Pp_l, to

the local static pressure, p, the jet exit velocity is obtained by

V,., _[. p_,_ J -1 _--1 p (4.4)

The total energy per unit volume at the jet slot exit is determined by Equation

(2.7).
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Figure 4.1: A schematic sketch of the actuator plane concept (taken from Craig
[1993]).





Chapter 5

Results and Discussion

5.1 General Remarks

Results obtained in this study are presented and discussed in this chapter. The

chapter is divided into no blowing cases, axial wing-tip blowing cases and

spanwise wing-tip blowing cases. Computational results are compared with

experimental data and theoretical analyses. The effects of axial and spanwise

wing-tip blowing on the performance of the wing and the behavior of the trailing

vortices are also discussed.

5.2 No Blowing Cases

5.2.1 Configuration

The configuration used in the present study for no blowing and axial wing-tip

blowing cases is the fixed-wing trailing vortex experiment of McAlister and

Takahashi [1991]. The experiment was conducted in the NASA Ames 7- by 10-

Foot Subsonic Wind Tunnel No. 2. Semi-span configurations were considered in

58
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the study and all the wings were rectangular and had a constant and untwisted

NACA 0015 symmetric airfoil profile along the entire span. The lateral edge of

each wing-tip was machined to a fiat or square face, but could be made round by

the addition of an end cap. For the present study, the rounded wing-tip

configuration is considered. A perspective view of the semi-span wing is shown

in Figure 3.1. With the rounded wing-tip end cap, the aspect ratio of the wing is

6.75. Three different chord lengths of 12.0, 16.2 and 20.4 inches were used in

the experimental study. However, the aspect ratio remained fixed by changing

the length of the wing span.

Computations were performed for angle-of-attack a = 4 °, 8 °, and 12 °,

freestream Mach number M = 0.17, and freestream Reynolds number based on

the wing chord Re=2.0 x 10 6.

5.2.2 General Flow Features

The rolling-up of the tip vortex and its subsequent convection downstream is

depicted by the particle traces in Figure 5.1. It is observed that farther inboard,

the flow remains very much two-dimensional.

Figure 5.2 (a) shows the side view of the trailing vortex. It is noticed that

the tip vortex starts to roll up even before it reaches the trailing edge of the wing

and that it eventually rolls up into the freestream direction and is convected

downstream. This is also observed in the experiments (see, for example,

McAlister and Takahashi [1991] and Chow et al [1993]). Figure 5.2 (b) shows

the plan view of the trailing vortex. It is observed that as the trailing vortex

moves downstream, it moves inboard asymptotically as well. For the present
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rectangular wing, the trailing vortices move about 5% inboard at stations far

downstream of the wing. Spreiter and Sacks [1951] showed that the trailing

vortices could move inboard by as much as about 25% at stations several chord

lengths behind the wing for an elliptically loaded wing. For elliptically loaded

wings, the asymptotic spacing between the trailing vortices is independent of the

angle of attack; whereas, for non-eMptically loaded wings, the asymptotic

spacing is a function of the angle of attack (see Spreiter and Sacks [1951]).

Figure 5.3 shows the velocity vectors at the quarter-chord location.

Notice that the flow accelerates from the higher pressure lower surface towards

the lower pressure upper surface by going around the wing-tip. No-slip

boundary conditions at the wall are observed for the Navier-Stokes

computations.

5.2.3 Pressure Distribution

The computational results for pressure (in terms of the coefficient of pressure,

Cp) on the wing surface for the outer 25% of the wing span and for cases of

ix = 4 °, 8 °, and 12 ° are given in Figures 5.4, 5.5, and 5.6, respectively. The

corresponding experimental results obtained by McAlister and Takahashi [1991]

are also included in the figures for comparison purposes. The freestream flow

conditions are: M =0.17 and Re=2.0 x 10 _.

As discussed in Section 5.2.1, the experiment was conducted in the NASA

Ames 7- by 10-Foot Subsonic Wind Tunnel No. 2. Due to the presence of the

wind tunnel walls, pressure measurements are altered from their free-air values

because of blockage and distortion of the streamlines. In a closed test section,
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blockage has the effect of producing a more dense flow and a higher velocity in

the region where the wing is located (see McAlister and Takahashi [1991]). The

nondimensional pressure coefficients are based on the "freestream" static and

dynamic pressures that are obtained from a pitot-static probe placed upstream in

the test section. By taking into account the blockage effects, the corrected

cp=p-(p q +Ap.) (5.1)
q.._ +Aq.

pressure coefficient is given as

where the subscript u denotes an uncorrected value and the symbol A stands for

the difference between corrected and uncorrected values. The corrected

freestream velocity, which is more representative of the constricted flow in the

test section where the wing is actually positioned, is given by

V = (1 + e)V.,, (5.2)

where V.._ is the "freestream" velocity at an upstream location that is not

influenced by the wing (measured with an upstream pitot-static probe) and e

represents the increase of velocity due to blockage effects.

By assuming constant density of flow due to the low Mach number and

using the approximation (1 + e) -_ = (1- 2e), Equation (5.1) can be simplified as

Cp = C_(1-2e)+2e (5.3)

where C_ is the pressure coefficient that would be formed using upstream

reference values (p.,, and q..,,), without regard for blockage effects.
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Since computations were carried out based on "free-air" formulations, the

wall correction procedures proposed by McAlister and Takahashi as described

above are applied to the experimental data for consistent comparisons. It is

observed in Figures 5.4, 5.5, and 5.6 that the computational results compare very

well with the experimental data except at the region near the leading edge and at

the trailing edge region near the wing-tip. The computations did not capture the

sharp leading edge suction peak and the vortex induced low pressure peak near

the trailing edge at the wing-tip region too well, especially for the higher angle-

of-attack case, due to the computer memory constraint. Results can be improved

by clustering more grid points in these regions.

It is also noticed that near the wing-tip, tip vortex is formed on the upper

surface of the wing. This tip vortex, which is reported by McAlister and

Takahashi [1991] as well as Spivey [1968], Yip and Shubert [1976], and Chow et

al [1993], are captured quite well in the computations. A single vortex induced

low pressure peak is observed near the trailing edge of the upper surface for the

rounded wing-tip configuration. Multiple pressure peaks have been reported for

squared wing-tip configurations (see, for example, Spivey [1968], and McAlister

and Takahashi [1991]). The formation of the tip vortex is clearly shown in

Figure 5.7 in terms of the pressure contours and Figure 5.8 in terms of the

velocity vectors. Low pressure is observed at the vortex core due to the high

rotational velocity. Figure 5.8 also shows the highly three dimensional nature of

the flow near the wing-tip.

Further inboard of the wing span, the flow remains very much two-

dimensional for most of the wing span. As illustrated in Figure 5.9, the Cp
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distributions for the inboard 60% of the wing span axe very similar. This is also

observed by McAlister and Takahashi [1991] though no experimental data are

available for comparison.

Figure 5.10 shows the stagnation pressure coefficient contours across the

trailing vortex for various axial stations downstream of the trailing edge. Notice

that the trailing edge is at xlc = 1. The low stagnation pressure vortex core is

clearly seen in the figure. It is observed that as the trailing vortex moves

downstream, the vortex core size increases.

5.2.4 Forces and Moment

The computed coefficients of lift, drag and pitching moment (about the wing

quarter-chord) for c_ = 4 °, 8 °, and 12 °, /14_ = 0.17 and Re = 2.0 x 106 are

compared with the experimental data of McAlister and Takahashi [1991] in

Figure 5.11.

As discussed in Section 5.2.3 and in McAlister and Takahashi [1991], the

presence of the wind-tunnel walls changes the flowfield around the wing. A

change in streamline curvature (caused by the airfoil images due to the presence

of the wind-tunnel walls) has the effect of imparting greater "apparent" camber

to the airfoil and inducing a higher angle of attack (or an increase in the effective

airfoil incidence). In order to have consistent comparisons with the computed

results, the lift coefficients obtained in the experiments were corrected for wall

effects as recommended by McAlister and Takahashi [1991]. For the present

experimental setup, a 0.51 ° correction in the angle of attack is required for the
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case of tx = 12 °. Effects of the wall on the coefficients of drag and pitching

moments are deemed to be small; thus, no wall corrections are made.

Overall, the computed coefficients of lift and pitching moment compare

favorably with the experimental results. Drag coefficients, however, are over

predicted by the computations.

5.2.5 Vortex Strength

Figure 5.12 shows the streamwise distribution of the normalized total circulation

for the case of cz = 12 °, M = 0.17 and Re = 2.0 x l0 s. The vortex strength or

the total circulation is defined as

r= P.d/ (5.4)
$

where V is the velocity vector, arg is the vector element of length along the path

of integration, and s is the path along which the line integral is taken. Notice that

F is normalized by cV/2, where c is the wing chord and V is the freestream

velocity, so that direct comparison with the section lift coefficient at the mid-

span of the wing can be made.

According to the inviscid analysis, the strength (at either subsonic or

supersonic speeds) of one of the trailing rolled-up vortices at stations far behind

the wing is equal to the sum of the strengths of all the vortices shed from one-

half of the wing, and, hence, it is equal to the magnitude of the circulation

around the wing in the plane of symmetry (see Spreiter and Sacks [1951]). Thus,

the normalized total circulation at stations far behind the wing is equal to the

section lift coefficient in the plane of symmetry.
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For stations immediately downstream of the trailing edge of the wing, the

trailing vortices are not fully rolled-up and much of the vortex strength of the

vortex system resides in the vortex sheet. As the vortex system moves farther

downstream, the vortex sheet irmally rolls up completely into the trailing vortices

(see Spreiter and Sacks [1951]).

The computed normalized total circulation is compared with the result of

the inviscid analysis in Figure 5.12. Notice that the path of integration for the

circulation calculation was chosen to enclose the trailing vortex but exclude the

vortex sheet as much as possible so that the rolling-up process of the vortex sheet

can be captured. It is observed in Figure 5.12 that the normalized total

circulation reaches a peak value at some station aft of the trailing edge (at which

the vortex sheet has completely rolled-up) and then reduces its strength slightly

until an asymptotic value is reached farther downstream. This asymptotic value

is found to be about 85% of the theoretical value predicted in the inviscid

analysis. The reduction in the circulation strength could be due to viscous

dissipation as was also observed in the experimental studies of Higuchi et al

[1986].

The comparison of the computed normalized downwash distribution

downstream of the trailing edge with the theoretical analysis of Spreiter and

Sacks [1951] for the case of ct=12 °, M =0.17 and Re=2.0 x 106 is shown in

Figure 5.13. Notice that the downwash w is normalized by V.Ctb/_ARb"

(where C, is the lift coefficient of the wing, b is the full-span of the wing, AR is

the aspect ratio of the wing, and b' is the distance between the trailing vortices )

as used by Spreiter and Sacks [1951]. Since the distance between the trailing
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vortices decreases as they move downstream, the spanwise distance, y, from the

plane of symmetry of the wing at various downstream stations is normalized by

b']2.

The inviscid analysis of Spreiter and Sacks [1951] assumed that the core

size of the trailing vortices remained unchanged (i.e., the vortex core did not

grow in size) and that the circulation strength remained constant; hence, a

universal curve for the normalized downwash distribution for stations far

downstream from the wing was obtained. In the present viscous computations, it

is observed that although the circulation strength remains constant at various

streamwise stations farther downstream from the wing, the maximum magnitude

of the downwash (or upwash depending on whether it is inboard or outboard of

the trailing vortices) decreases as the trailing vortices travel downstream because

the size of the vortex core increases due to the entrainment of the surrounding

fluid into the viscous vortex core.

5.3 Axial Wing-Tip Blowing Cases

5.3.1 Configuration

The same configuration described in Section 5.2.1 for the no blowing cases is

used for the axial wing-tip blowing cases. In addition, a jet slot is created as

shown in Figure 5.14. The jet slot has a length of 11.2% of the wing chord and

a width of 1.5% of the wing chord. Due to the presence of the jet slot, a small

step of height 1.5% of the wing chord is created on the wing surface. As

discussed in Section 4.3 the actuator plane concept is employed in the
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computations to model this jet slot. The intensity of the axial wing-tip blowing is

controlled by changing the jet plenum supply pressure.

Results presented here are for a=8 °, M =0.17 and Re=2 x 106. The

blowing intensity varies from C# = 0.0000 to 0.0047. The highest blowing

intensity gives a jet exit velocity closed to sonic condition. Results presented are

also for jet slot located at the 90%-chord of the wing. Computations were

performed for jet slot located farther upstream as well; however, it was observed

that less penetration into the flowfield was achieved as the wall jet had to

overcome additional wing surface area. They are therefore not presented.

5.3.2 General Flow Features

Figure 5.15 shows the closed-up views of the velocity vectors in the wing-tip

region for cases with the axial wing-tip blowing off and on. Without blowing, a

typical turbulent boundary layer velocity profile is observed in Figure 5.15 (a).

By turning the blowing on, the presence of the jet transforms the boundary layer

profile into a wall jet profile (see Figure 5.15 (b)). It is observed that consistent

with experimental observations the velocity profiles upstream of the jet slot are

not affected by the presence of the jet. This consistency is possible since the

actuator plane concept models the jet as a one-sided source of mass, momentum

and energy.

Figure 5.16 shows the effect of axial wing-tip blowing on the flowfield

downstream of the trailing edge of the wing. As shown in Figure 5.16 (b), the

high velocity jet penetrates into the vortex core of the trailing vortex for some

downstream distance before the effect of the blowing diminishes. It is also
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observed that due to the rolling-up process of the vortex sheet, the jet re-aligns

itself into the freestream direction together with the trailing vortex.

5.3.3 Vortex Strength

Figure 5.17 shows the variation of the streamwise distribution of the normalized

total circulation with the blowing momentum coefficient. As discussed in Section

5.2.5 for the case with blowing off, the normalized total circulation reaches a

peak value at some station aft of the trailing edge (at which the vortex sheet has

completely rolled-up) and then reduces its strength slightly until an asymptotic

value is reached farther downstream. With blowing on, the same phenomenon is

observed except that now it takes longer for the circulation to reach a peak value,

i.e., it takes longer for the vortex sheet to roll up completely. As the blowing

intensity increases, the rolling-up process is delayed further. The delay in the

rolling-up process due to blowing can be seen more clearly by the particle traces

in Figure 5.18. It is shown in Figure 5.18 (a) that without blowing the tip vortex

starts to roll up even before it reaches the trailing edge of the wing. With

blowing turned on in Figure 5.18 (b), the momentum of the jet delays the

rolling-up of the vortex sheet.

It is also observed in Figure 5.17 that the total circulation strength of the

trailing vortex increases slightly for stations farther downstream of the wing as

the blowing intensity increases. This is due to the fact that the axial wing-tip

blowing increases the lift on the wing slightly (to be discussed in Section 5.3.4);

and that the higher the wing lift, the stronger the circulation of the trailing

vortex.
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Figures 5.19 and 5.20 show the downwash distribution at various axial

stations downstream of the trailing edge for cases with blowing off and on,

respectively. For stations immediately downstream of the trailing edge, the

downwash differs slightly for cases with blowing off and on. However, the

downwash distribution for the case with blowing on is quite similar to that with

blowing off for stations farther downstream of the wing except that the former

has a slightly higher value due to the stronger circulation strength discussed

earlier.

Since the circulation strength of the trailing vortex is an overall feature of

the wing loading, the axial wing-tip blowing, although possibly able to change

the behavior of the local flowfield, is unable to alter the flowfield features

farther downstream. It was also observed in the experimental study of Snedeker

[1972] that the axial wing-tip blowing, although it altered the near-field velocity

distribution, did not reduce the rolling moment imposed on an object farther

downstream. Dunham [1976] classified the axial wing-tip blowing as an

unsuccessful concept for aircraft wake vortex minimization.

5.3.4 Forces and Moment

Figure 5.21 shows the effects of axial wing-tip blowing on the overall

performance of the wing in terms of lift, drag and pitching moment (about the

wing quarter-chord). It is observed that as the blowing intensity increases the

lift on the wing increases. This is due to the fact that the high velocity jet

entrains the surrounding fluid on the upper surface of the wing. This creates a

low pressure region in the vicinity of the jet (see Figure 5.22) and increases the

lift on the wing.
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Since the jet slot is located near the trailing edge of the wing, this low

pressure region also increases the pressure drag on the wing and results in higher

overall drag. Similarly, the low pressure region also creates a pitching down

moment on the wing. Thus, the overall pitching moment (taken as positive for

pitching up moment) decreases as the blowing intensity increases.

5.4 Spanwise Wing-Tip Blowing Cases

5.4.1 Configuration

Theconfiguration used in the experiments of Tavella et al [1985, 1988] and Lee

et al [1989] (see Figure 5.23) is used in the present computational study with

spanwise wing-tip blowing. The experiments were conducted in the Stanford

low-speed wind-tunnel which had a 45.7 cmx 45.7 cm test section and a

freestream velocity of 40 m/s, giving a chord-based Reynolds number of

4 x 105. A semi-span rectangular wing with a constant and untwisted NACA

0018 symmetric airfoil profile along the entire span was used. The wing-tip is

rounded and the (full-span) aspect ratio of the wing is 3.28.

A jet slot with a thickness of 0.16 cm was positioned in the plane of

symmetry of the wing-tip, extended over 73.3% of the chord and oriented such

that the jet exited in the spanwise direction. The jet blowing intensity was

controlled by the jet supply plenum pressure and varied from

C_ = 0.0000 to 0.2236.
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5.4.2 General Flow Features

Figure 5.24 shows the close-up views of the velocity vectors at 10% chord

downstream of the wing trailing edge for cases with spanwise wing-tip blowing

off and on, and ¢x = 8*. Figure 5.24 (a) shows clearly the formation of the

trailing vortex at the wing-tip region. With moderately low blowing intensity,

Figure 5.24 (b) shows that the trailing vortex is displaced not just outwards but

also upwards. This is also observed in the experiment of Lee et al [1989].

Figure 5.25 shows a sequence of velocity vectors at the 90%-chord for

ot = 2 ° with increasing blowing intensity. It is observed, especially in Figures

5.25 (c) and (d), that in addition to the primary vortex, a secondary vortex

rotating in the opposite direction of the primary vortex is formed at higher

blowing intensities. The jet blowing becomes dominant and a typically free jet

velocity profile is seen. This is also observed in the experiment of Lee et ai

[1989].

5.4.3 Forces and Moment

Figure 5.26 shows the variations of the coefficients of lift, drag, pitching

moment (about the wing quarter-chord) and LID with the blowing momentum

coefficient for ¢x= 2*, 4", 6" and 8*. It is observed in Figure 5.26 (a) that as the

spanwise wing-tip blowing intensity increases, lift on the wing increases. The

nonlinearity of the lift coefficient with the blowing momentum coefficient was

also observed in the experiments (see Tavella et al [1985, 1988] and Lee et al

[1989]). It is noticed that the computations predict the experimental results very

well for cases of ¢t = 2* and 4*; whereas, over-predictions by the computations
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are observed for cases of cr = 6" and 8°. Figure 5.27 shows the comparison of

the computational results with the experimental data for the lift coefficient for

various angles-of-attack without spanwise wing-tip blowing. Notice that no wall

corrections to the experimental data were made. For low angle-of-attack cases,

wall blockage is small and the computational and experimental results compare

favorably. However, effects of the wall blockage become prominent at higher

angle-of-attack and resulting in greater discrepancies between the computational

and experimental results.

Figure 5.26 (b) shows the computational results for the variation of the

drag coefficient with blowing momentum coefficient. It is noticed that at

moderately low blowing intensities, the drag increases. However, by increasing

the blowing intensity further, the drag decreases. The drag coefficient may be

lower than that without spanwise wing-tip blowing for high enough blowing

intensity and lower angle-of-attack cases. It is also observed that for a particular

blowing intensity, the drag increase is higher for higher angle-of-attack cases.

This is clearly illustrated in Figure 5.26 (d) in which the variation of the LID

ratio with the blowing intensity is presented. It is noticed that returns on LID via

spanwise wing-tip blowing are more attractive for lower angle-of-attack cases

than for higher angle-of-attack cases.

Figure 5.26 (c) shows the variation of the pitching moment (about the

wing quarter-chord) with blowing intensity. It is observed that as the blowing

intensity increases, the pitching-up moment on the wing decreases marginally.

Since spanwise wing-tip blowing is applied on almost the entire chord, the impact
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of blowing on the pitching moment on the wing tends to even out and results in

marginal changes in the pitching moment.

5.4.4 Vortex Strength

Figure 5.28 shows the variation of the streamwise distribution of the normalized

total circulation with blowing momentum coefficient for the case of o_= 4". For

streamwise stations immediately downstream of the wing trailing edge, the

circulation integration loop basically encloses the tip vortex (or primary vortex)

and excludes the secondary vortex. Since spanwise wing-tip blowing has the

effect of increasing the circulation strength of the primary and secondary

vortices, a rather high normalized total circulation strength immediately

downstream of the trailing edge is observed in Figure 5.28. However, as the

vortices moves downstream, the circulation integration loop starts to enclose part

of the secondary vortex which rotates in the opposite direction to that of the

primary vortex. This results in a reduced circulation strength. For stations far

downstream, the circulation integration loops eventually enclose both the

primary and second vortices and an asymptotic value is reached for the vortex

system. It is observed that the asymptotic circulation strength increases as the

blowing intensity increases. This is intuitive since the overall lift on the wing

increases as a result of spanwise wing-tip blowing, the total circulation strength

for the vortex system fax downstream must increase.

Figure 5.29 shows the streamwise development of the primary and

secondary vortices. The formation of the primary and secondary vortices at

high blowing intensity is clearly seen in Figure 5.29 (a). At the 90%-chord

station, these vortices are distinctively apart.
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5.5 Solution Accuracy

Due to the constraints of the available computer speed and computer memory,

computations were performed using 83x69x61 (i.e., 349,347) grid points. These

constraints prevent a grid refinement study, which uses more grid points, to be

carded out. However, the computational results obtained by using 51x51x41

(i.e., 106,641) grid points are compared with the present results and the

experimental data to study the effect of grid refinement on solution accuracy.

Figure 5.30 shows the comparison in terms of Cp distribution. It is

observed that the leading edge suction peak can be better captured by the fine

grid case as compared with the coarse grid case. The vortex induced low

pressure peak near the trailing edge at the wing-tip region (see Figure 5.30 (b))

is also better captured by the fine grid case. Overall, the computational results

obtained by the f'me grid case have a better agreement with the experimental data

as compared with those obtained by the coarse grid case.

By comparing results obtained from the coarse and fine grid cases, a

simple error analysis yields an error e(h)=[_p(h)-_p(txh)]/(1-tx_), where

denotes the solution and _ denotes the grid refinement factor. Based on the lift

coefficients obtained from the coarse and fine grid cases, the fine grid case gives

an error of 2.5%.
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(a) Side view.
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Figure 5.2: Side and plan views of the trailing vortex.
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Figure 5.3: Velocity vectors at the quarter-chord showing flow from the lower
surface to the upper surface of the wing near the wing-tip.
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Figure 5.7: Formation of the tip vortex at x/c = 0.9 depicted by the stagnation

pressure coefficient contours.
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(a) At x/c = 0.9.

Figure 5.8: Velocity vectors showing the highly three-dimensional nature of thetip vortex.
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Figure 5.14: The jet slot with a jet length of 11.2% chord and a jet width of
1.5% chord is located at the 90%-chord location for the axial wing-tip blowing.
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Figure 5.15: Velocity vectors at the spanwise station 2y/b = 0.9693 (zoom-in).
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Figure 5.18: Particle traces showing the rolling-up of the trailing vortex with

axial wing-tip blowing off and on.
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(a) Blowing off.

(b) Blowing on ( C. = 0.0047).

Figure 5.22: Pressure contours at x/c = 0.95 near the wing-tip region for cases

with axial wing-tip blowing off and on.
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CHAPTER 5. RESULTS AND DISCUSSION 98

It
I

!

'l I ! /

;2"- .

,,q

(a) Blowing off.

•.. !
%

- t
" I

' I
" • 1 1111 I

• 111|I o //

, ,
I_f._. f ! ! ..

(b) Blowing on ( C# = 0.0169).
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Figure 5.25: Concluded.
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Figure 5.29: Stagnation pressure contours showing the streamwise development

of the primary and secondary vortices for the case ce = 2" and Cj, = 0.2067.
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Figure 5.29: Continued.
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Figure 5.29: Concluded.
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Chapter 6

Conclusions and

Recommendations

6.1 Conclusions

Numerical simulations of the complex flowfield of the trailing vortex of a wing

with axial and spanwise wing-tip blowing have been successfully performed

using Computational Fluid Dynamics techniques. The unsteady, three-

dimensional, thin-layer Navier-Stokes equations are solved using a time-accurate,

implicit, f'mite difference numerical algorithm. The actuator plane concept and

the solution blanking feature of the chimera scheme have been successfully

incorporated to simulate wing-tip blowing.

in good agreement with experimental data.

study are summarized as follows:

Computational results are generally

The main conclusions of the present

(1) The axial wing-tip blowing has the effect of modifying the

flowfield behavior immediately downstream of the wing.

109



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 110

(2)

(3)

(4)

(5)

However, its effect diminishes farther downstream. Overall, the

axial wing-tip blowing strengthens the circulation strength of the

trailing vortex marginally due to the marginal increase in the wing

lift.

At moderately low blowing intensity, the spanwise wing-tip

blowing has the effect of displacing the tip vortex outboard and

upwards and results in the augmentation of lift.

At higher blowing intensity, a secondary vortex rotating in the

opposite direction to the primary vortex is formed by the spanwise

wing-tip blowing.

The circulation strength of the vortex system increases as a result

of lift augmentation on the wing due to the spanwise wing-tip

blowing.

Spanwise wing-tip blowing can be an effective means of control to

effect a change of vortex position on one wing-tip and thereby

produce a rolling moment through asymmetric wing lift.

6.2 Recommendations

Some recommendations for future work are as follows:

(1) Improve the solution accuracy by increasing the grid point density

in the regions of the leading edge, trailing edge, tip of the wing and
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(2)

(3)

(4)

(5)

the trajectory of the trailing vortex. Study the effect of grid

refinement on solution accuracy.

Extend the outflow boundary to several wing spans to capture the

far-field behavior of the trailing vortex.

Perform full Navier-Stokes simulations to investigate the

limitations of the thin-layer approximation for the trailing vortex

flow.

Model the complex flowfield of the trailing vortex with wing-tip

blowing with better turbulence models.

Simulate the complex flowfield of the trailing vortex with wing-tip

blowing for a rotorcraft by incorporating the rotating motion of

the rotor blades. Fine grid points must be clustered to capture the

trailing vortices from the rotor blades as they spiral downwards

due to the rotor downwash.
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